REGULAR SUB-QUOTIENTS OF THE C-SYSTEMS $C(\mathbf{RR}, \mathbf{LM})$

VLADIMIR VOEVODSKY

Abstract.

CONTENTS

1.	Introduction	1
1.1.	Regular sub-quotients of $CC(R, LM)$.	1

1. INTRODUCTION

1.1. Regular sub-quotients of CC(R, LM). Let (R, LM) be as above and

$$\begin{split} Ceq &\subset \coprod_{n\geq 0} (\prod_{i=0}^{n-1} LM(\widehat{i})) \times LM(stn(n))^2 \\ & \widetilde{Ceq} \subset \coprod_{n\geq 0} (\prod_{i=0}^n LM(\widehat{i})) \times R(stn(n))^2 \end{split}$$

be two subsets.

For $\Gamma = (T_1, \ldots, T_n) \in ob(CC(R, LM))$ and $S_1, S_2 \in LM(stn(n))$ we write $(\Gamma \vdash_{Ceq} S_1 = S_2)$ to signify that $(T_1, \ldots, T_n, S_1, S_2) \in Ceq$. Similarly for $T \in LM(stn(n))$ and $o, o' \in R(stn(n))$ we write $(\Gamma \vdash_{\widetilde{Ceq}} o = o' : S)$ to signify that $(T_1, \ldots, T_n, S, o, o') \in \widetilde{Ceq}$. When no confusion is possible we will omit the subscripts Ceq and \widetilde{Ceq} at \vdash .

Similarly we will write \triangleright instead of \triangleright_C and \vdash instead of $\vdash_{\widetilde{C}}$ if the subsets C and \widetilde{C} are unambiguously determined by the context.

Definition 1.1. [simandsimeq] Given subsets C, \widetilde{C} , Ceq, \widetilde{Ceq} as above define relations \sim on C and \simeq on \widetilde{C} as follows:

(1) for $\Gamma = (T_1, \dots, T_n)$, $\Gamma' = (T'_1, \dots, T'_n)$ in C we set $\Gamma \sim \Gamma'$ iff $ft(\Gamma) \sim ft(\Gamma')$ and

$$T_1,\ldots,T_{n-1}\vdash T_n=T'_n,$$

(2) for $(\Gamma \vdash o : S)$, $(\Gamma' \vdash o' : S')$ in \widetilde{C} we set $(\Gamma \vdash o : S) \simeq (\Gamma' \vdash o' : S')$ iff $(\Gamma, S) \sim (\Gamma', S')$ and

$$(\Gamma \vdash o = o' : S)$$

Proposition 1.2. [2014.07.10.prop1] Let C, \widetilde{C} , Ceq, \widetilde{Ceq} be as above and suppose in addition that one has:

(1) C and \widetilde{C} satisfy conditions (1)-(6) of Proposition ?? which are referred to below as conditions (1.1)-(1.6) of the present proposition,

(2)

 $\begin{array}{ll} (a) & (\Gamma \vdash T = T') \Rightarrow (\Gamma, T \rhd) \\ (b) & (\Gamma, T \rhd) \Rightarrow (\Gamma \vdash T = T) \\ (c) & (\Gamma \vdash T = T') \Rightarrow (\Gamma \vdash T' = T) \\ (d) & (\Gamma \vdash T = T') \land (\Gamma \vdash T' = T'') \Rightarrow (\Gamma \vdash T = T'') \end{array}$

(3)

$$(a) \quad (\Gamma \vdash o = o': T) \Rightarrow (\Gamma \vdash o: T)$$

$$(b) \quad (\Gamma \vdash o: T) \Rightarrow (\Gamma \vdash o = o: T)$$

$$(c) \quad (\Gamma \vdash o = o': T) \Rightarrow (\Gamma \vdash o' = o: T)$$

$$(d) \quad (\Gamma \vdash o = o': T) \land (\Gamma \vdash o' = o'': T) \Rightarrow (\Gamma \vdash o = o'': T)$$

$$(4)$$

$$(a) \quad (\Gamma_1 \vdash T = T') \land (\Gamma_1, T, \Gamma_2 \vdash S = S') \Rightarrow (\Gamma_1, T', \Gamma_2 \vdash S = S')$$

$$(b) \quad (\Gamma_1 \vdash T = T') \land (\Gamma_1, T, \Gamma_2 \vdash S = S') \Rightarrow (\Gamma_1, T', \Gamma_2 \vdash S = S')$$

$$(b) \quad (\Gamma_1 \vdash T = T') \land (\Gamma_1, T, \Gamma_2 \vdash o = o' : S) \Rightarrow (\Gamma_1, T', \Gamma'_2 \vdash o = o' : c) \quad (\Gamma \vdash S = S') \land (\Gamma \vdash o = o' : S) \Rightarrow (\Gamma \vdash o = o' : S')$$

$$\begin{array}{ll} (a) & (\Gamma_1, T \rhd) \land (\Gamma_1, \Gamma_2 \vdash S = S') \Rightarrow (\Gamma_1, T, t_{i+1}\Gamma_2 \vdash t_{i+1}S = t_{i+1}S') & i = l(\Gamma) \\ (b) & (\Gamma_1, T \rhd) \land (\Gamma_1, \Gamma_2 \vdash o = o' : S) \Rightarrow (\Gamma_1, T, t_{i+1}\Gamma_2 \vdash t_{i+1}o = t_{i+1}o' : t_{i+1}S) & i = l(\Gamma) \\ (6) \end{array}$$

S)

$$\begin{array}{ll} (a) & (\Gamma_1, T, \Gamma_2 \vdash S = S') \land (\Gamma_1 \vdash r : T) \Rightarrow \\ (\Gamma_1, s_{i+1}(\Gamma_2[r/i+1]) \vdash s_{i+1}(S[r/i+1]) = s_{i+1}(S'[r/i+1])) & i = l(\Gamma_1) \\ (b) & (\Gamma_1, T, \Gamma_2 \vdash o = o' : S) \land (\Gamma_1 \vdash r : T) \Rightarrow \\ (\Gamma_1, s_{i+1}(\Gamma_2[r/i+1]) \vdash s_{i+1}(o[r/i+1]) = s_{i+1}(o'[r/i+1]) : s_{i+1}(S[r/i+1])) & i = l(\Gamma_1) \\ (7) \end{array}$$

$$\begin{array}{ll} (a) & (\Gamma_1, T, \Gamma_2, S \rhd) \land (\Gamma_1 \vdash r = r': T) \Rightarrow \\ (\Gamma_1, s_{i+1}(\Gamma_2[r/i+1]) \vdash s_{i+1}(S[r/i+1]) = s_{i+1}(S[r'/i+1])) & i = l(\Gamma_1) \\ (b) & (\Gamma_1, T, \Gamma_2 \vdash o: S) \land (\Gamma_1 \vdash r = r': T) \Rightarrow \\ (\Gamma_1, s_{i+1}(\Gamma_2[r/i+1]) \vdash s_{i+1}(o[r/i+1]) = s_{i+1}(o[r'/i+1]): s_{i+1}(S[r/i+1])) & i = l(\Gamma_1) \end{array}$$

Then the relations \sim and \simeq are equivalence relations on C and \widetilde{C} which satisfy the conditions of [?, Proposition 5.4] and therefore they correspond to a regular congruence relation on the C-system defined by (C, \widetilde{C}) .

Lemma 1.3. /iseqrelsiml1/ One has:

- (1) If conditions (1.2), (4a) of the proposition hold then $(\Gamma \vdash S = S') \land (\Gamma \sim \Gamma') \Rightarrow (\Gamma' \vdash S = S').$
- (2) If conditions (1.2), (1.3), (4a), (4b), (4c) hold then $(\Gamma \vdash o = o' : S) \land ((\Gamma, S) \sim (\Gamma', S')) \Rightarrow (\Gamma' \vdash o = o' : S').$

Proof. By induction on $n = l(\Gamma) = l(\Gamma')$.

(1) For n = 0 the assertion is obvious. Therefore by induction we may assume that $(\Gamma \vdash S = S') \land (\Gamma \sim \Gamma') \Rightarrow (\Gamma' \vdash S = S')$ for all i < n and all appropriate Γ, Γ', S and S' and that $(T_1, \ldots, T_n \vdash S = S') \land (T_1, \ldots, T_n \sim T'_1, \ldots, T'_n)$ holds and we need to show that $(T'_1, \ldots, T'_n \vdash S = S')$ holds. Let us show by induction on j that $(T'_1, \ldots, T'_j, T_{j+1}, \ldots, T_n \vdash S = S')$ for all $j = 0, \ldots, n$. For j = 0 it is a part of our assumptions. By induction we may assume that $(T'_1, \ldots, T'_j, T_{j+1}, \ldots, T_n \vdash S = S')$. By definition of \sim we have $(T_1, \ldots, T_j \vdash T_{j+1} = T'_{j+1})$. By the inductive assumption we have $(T'_1, \ldots, T'_j \vdash T_{j+1} = T'_{j+1})$. Applying (4a) with $\Gamma_1 = (T'_1, \ldots, T'_j), T = T_{j+1}, T' = T'_{j+1}$ and $\Gamma_2 = (T_{j+2}, \ldots, T_n)$ we conclude that $(T'_1, \ldots, T'_{j+1}, T_{j+2}, \ldots, T_n \vdash S = S')$.

(2) By the first part of the lemma we have $\Gamma' \vdash S = S'$. Therefore by (4c) it is sufficient to show that $(\Gamma \vdash o = o' : S) \land (\Gamma \sim \Gamma') \Rightarrow (\Gamma' \vdash o = o' : S)$. The proof of this fact is similar to the proof of the first part of the lemma using (4b) instead of (4a).

Lemma 1.4. /iseqrelsim/ One has:

- (1) Assume that conditions (1.2), (2b), (2c), (2d) and (4a) hold. Then \sim is an equivalence relation.
- (2) Assume that conditions of the previous part of the lemma as well as conditions (1.3), (3b), (3c), (3d), (4b) and (4c) hold. Then ≃ is an equivalence relation.

Proof. By induction on $n = l(\Gamma) = l(\Gamma')$.

(1) Reflexivity follows directly from (1.2) and (2b). For n = 0 the symmetry is obvious. Let $(\Gamma, T) \sim (\Gamma', T')$. By induction we may assume that $\Gamma' \sim \Gamma$. By Lemma 1.3(a) we have $(\Gamma' \vdash T = T')$ and by (2c) we have $(\Gamma' \vdash T' = T)$. We conclude that $(\Gamma', T') \sim (\Gamma, T)$. The proof of transitivity is by a similar induction.

(2) Reflexivity follows directly from reflexivity of \sim , (1.3) and (3b). Symmetry and transitivity are also easy using Lemma 1.3.

From this point on we assume that all conditions of Proposition 1.2 hold. Let $C' = C/\sim$ and $\widetilde{C}' = \widetilde{C}/\sim$. It follows immediately from our definitions that the functions $ft: C \to C$ and $\partial: \widetilde{C} \to C$ define functions $ft': C' \to C'$ and $\partial': \widetilde{C}' \to C'$.

Lemma 1.5. [surjl1] The conditions (3) and (4) of [?, Proposition 5.4] hold for \sim and \simeq .

Proof. 1. We need to show that for $(\Gamma, T \triangleright)$, and $\Gamma \sim \Gamma'$ there exists $(\Gamma', T' \triangleright)$ such that $(\Gamma, T) \sim (\Gamma', T')$. It is sufficient to take T = T'. Indeed by (2b) we have $\Gamma \vdash T = T$, by Lemma 1.3(1) we conclude that $\Gamma' \vdash T = T$ and by (1a) that $\Gamma', T \triangleright$.

2. We need to show that for $(\Gamma \vdash o: S)$ and $(\Gamma, S) \sim (\Gamma', S')$ there exists $(\Gamma' \vdash o': S')$ such that $(\Gamma' \vdash o': S') \simeq (\Gamma \vdash o: S)$. It is sufficient to take o' = o. Indeed, by (3b) we have $(\Gamma \vdash o = o: S)$, by Lemma 1.3(2) we conclude that $(\Gamma' \vdash o = o: S')$ and by (2a) that $(\Gamma' \vdash o: S')$.

Lemma 1.6. [TSetc] The equivalence relations \sim and \simeq are compatible with the operations $T, \widetilde{T}, S, \widetilde{S}$ and δ .

Proof. (1) Given $(\Gamma_1, T \triangleright) \sim (\Gamma'_1, T' \triangleright)$ and $(\Gamma_1, \Gamma_2 \triangleright) \sim (\Gamma'_1, \Gamma'_2 \triangleright)$ we have to show that

$$(\Gamma_1, T, t_{n+1}\Gamma_2) \sim (\Gamma'_1, T', t_{n+1}\Gamma'_2).$$

where $n = l(\Gamma_1) = l(\Gamma'_1)$.

Proceed by induction on $l(\Gamma_2)$. For $l(\Gamma_2) = 0$ the assertion is obvious. Let $(\Gamma_1, T \triangleright) \sim (\Gamma'_1, T' \triangleright)$ and $(\Gamma_1, \Gamma_2, S \triangleright) \sim (\Gamma'_1, \Gamma'_2, S' \triangleright)$. The later condition is equivalent to $(\Gamma_1, \Gamma_2 \triangleright) \sim (\Gamma'_1, \Gamma'_2 \triangleright)$ and $(\Gamma_1, \Gamma_2 \vdash S = S')$. By the inductive assumption we have $(\Gamma_1, T, t_{n+1}\Gamma_2) \sim (\Gamma'_1, T', t_{n+1}\Gamma'_2)$. By (5a) we conclude that $(\Gamma_1, T, t_{n+1}\Gamma_2 \vdash t_{n+1}S = t_{n+1}S')$. Therefore by definition of \sim we have $(\Gamma_1, T, t_{n+1}\Gamma_2, t_{n+1}S) \sim (\Gamma'_1, T', t_{n+1}\Gamma'_2)$.

(2) Given $(\Gamma_1, T \triangleright) \sim (\Gamma'_1, T' \triangleright)$ and $(\Gamma_1, \Gamma_2 \vdash o : S) \simeq (\Gamma'_1, \Gamma'_2 \vdash o' : S')$ we have to show that $(\Gamma_1, T, t_{n+1}\Gamma_2 \vdash t_{n+1}o : t_{n+1}S) \simeq (\Gamma'_1, T', t_{n+1}\Gamma'_2 \vdash t_{n+1}o' : t_{n+1}S')$ where $n = l(\Gamma_1) = l(\Gamma'_1)$. We have $(\Gamma_1, \Gamma_2, S) \sim (\Gamma'_1, \Gamma'_2, S')$ and $(\Gamma_1, \Gamma_2 \vdash o = o' : S)$. By (5b) we get $(\Gamma_1, T, t_{n+1}\Gamma_2 \vdash t_{n+1}o = t_{n+1}o' : t_{n+1}S)$. By (1) of this lemma we get $(\Gamma_1, T, t_{n+1}\Gamma_2, t_{n+1}S) \sim (\Gamma'_1, T', t_{n+1}\Gamma'_2, t_{n+1}S')$ and therefore by definition of \simeq we get $(\Gamma_1, T, t_{n+1}\Gamma_2 \vdash t_{n+1}o : t_{n+1}S) \simeq (\Gamma'_1, T', t_{n+1}\Gamma'_2 \vdash t_{n+1}o' : t_{n+1}S')$.

(3) Given $(\Gamma_1 \vdash r : T) \simeq (\Gamma'_1 \vdash r' : T')$ and $(\Gamma_1, T, \Gamma_2 \triangleright) \sim (\Gamma'_1, T', \Gamma'_2 \triangleright)$ we have to show that

$$(\Gamma_1, s_{n+1}(\Gamma_2[r/n+1])) \sim (\Gamma'_1, s_{n+1}(\Gamma'_2[r'/n+1])).$$

where $n = l(\Gamma_1) = l(\Gamma'_1)$. Proceed by induction on $l(\Gamma_2)$. For $l(\Gamma_2) = 0$ the assertion follows directly from the definitions. Let $(\Gamma_1 \vdash r : T) \simeq (\Gamma'_1 \vdash r' : T')$ and $(\Gamma_1, T, \Gamma_2, S \triangleright) \sim (\Gamma'_1, T', \Gamma'_2, S' \triangleright)$. The later condition is equivalent to $(\Gamma_1, T, \Gamma_2 \triangleright) \sim (\Gamma'_1, T', \Gamma'_2 \triangleright)$ and $(\Gamma_1, T, \Gamma_2 \vdash S = S')$. By the inductive assumption we have $(\Gamma_1, s_{n+1}(\Gamma_2[r/n+1])) \sim (\Gamma'_1, s_{n+1}(\Gamma'_2[r'/n+1]))$. It remains to show that $(\Gamma_1, s_{n+1}(\Gamma_2[r/n+1]) \vdash s_{n+1}(S[r/n+1]) = s_{n+1}(S'[r'/n+1]))$. By (2d) it is sufficient to show that $(\Gamma_1, s_{n+1}(\Gamma_2[r/n+1]) \vdash s_{n+1}(S'[r'/n+1])) = s_{n+1}(S'[r/n+1]))$ and $(\Gamma_1, s_{n+1}(\Gamma_2[r/n+1]) \vdash s_{n+1}(S'[r/n+1]) = s_{n+1}(S'[r'/n+1]))$. The first relation follows directly from (6a). To prove the second one it is sufficient by (7a) to show that $(\Gamma_1, T, \Gamma_2, S' \triangleright)$ which follows from our assumption through (2c) and (2a).

(4) Given $(\Gamma_1 \vdash r : T) \simeq (\Gamma'_1 \vdash r' : T')$ and $(\Gamma_1, T, \Gamma_2 \vdash o : S) \simeq (\Gamma'_1, T', \Gamma'_2 \vdash o' : S')$ we have to show that

$$(\Gamma_1, s_{n+1}(\Gamma_2[r/n+1]) \vdash s_{n+1}(o[r/n+1]) : s_{n+1}(S[r/n+1])) \simeq (\Gamma_1', s_{n+1}(\Gamma_2'[r'/n+1]) \vdash s_{n+1}(o'[r'/n+1]) : s_{n+1}(S'[r'/n+1])).$$

where $n = l(\Gamma_1) = l(\Gamma'_1)$ or equivalently that

$$\begin{split} &(\Gamma_1, s_{n+1}(\Gamma_2[r/n+1]), s_{n+1}(S[r/n+1])) \sim (\Gamma_1', s_{n+1}(\Gamma_2'[r'/n+1]), s_{n+1}(S'[r'/n+1])) \\ &\text{and } (\Gamma_1, s_{n+1}(\Gamma_2[r/n+1]) \vdash s_{n+1}(o[r/n+1]) = s_{n+1}(o'[r'/n+1]) : s_{n+1}(S[r/n+1])). \\ &\text{The first statement follows from part (3) of the lemma. To prove the second statement it is sufficient by (3d) to show that <math>(\Gamma_1, s_{n+1}(\Gamma_2[r/n+1]) \vdash s_{n+1}(o[r/n+1]) = s_{n+1}(o'[r/n+1]) : s_{n+1}(S[r/n+1])) \\ &\text{and } (\Gamma_1, s_{n+1}(\Gamma_2[r/n+1]) \vdash s_{n+1}(o'[r/n+1]) = s_{n+1}(o'[r/n+1])) : s_{n+1}(S[r/n+1])). \\ &\text{The first statement follows from part (3) of the lemma. To prove the second statement it is sufficient by (3d) to show that <math>(\Gamma_1, s_{n+1}(\Gamma_2[r/n+1]) \vdash s_{n+1}(o[r/n+1]) = s_{n+1}(o'[r/n+1]) : s_{n+1}(S[r/n+1])). \\ &\text{The first assertion follows directly from (6b).} \end{split}$$

To prove the second one it is sufficient in view of (7b) to show that $(\Gamma_1, T, \Gamma_2 \vdash o' : S)$ which follows conditions (3c) and (3a).

(5) Given $(\Gamma, T) \sim (\Gamma', T')$ we need to show that $(\Gamma, T \vdash (n+1) : T) \simeq (\Gamma', T' \vdash (n+1) : T')$ or equivalently that $(\Gamma, T, T) \sim (\Gamma, T', T')$ and $(\Gamma, T \vdash (n+1) = (n+1) : T)$. The second part follows from (3b). To prove the first part we need to show that $(\Gamma, T \vdash T = T')$. This follows from our assumption by (5a).

Lemma 1.7. [2014.07.12.11] Let C be a subset of Ob(CC(R, LM)) which is closed under ft. Let \leq be a transitive relation on C such that:

(1) $\Gamma \leq \Gamma'$ implies $l(\Gamma) = l(\Gamma')$,

(2) $\Gamma \in C$ and $ft(\Gamma) \leq F$ implies $\sigma(\Gamma, F) \in C$ and $\Gamma \leq \sigma(\Gamma, F)$.

Then $\Gamma \in C$ and $ft^i(\Gamma) \leq F$ for some $i \geq 1$, implies that $\Gamma \leq \sigma(\Gamma, F)$.

Proof. Simple induction on i.

Lemma 1.8. [2014.07.12.12] Let C and \leq be as in Lemma 1.7. Then one has:

- (1) $(\Gamma, T) \leq (\Gamma, T')$ and $\Gamma \leq \Gamma'$ implies that $(\Gamma, T) \leq (\Gamma', T')$,
- (2) if \leq is ft-monotone (i.e. $\Gamma \leq \Gamma'$ implies $ft(\Gamma) \leq ft(\Gamma')$) and symmetric then $(\Gamma, T) \leq (\Gamma', T')$ implies that $(\Gamma, T) \leq (\Gamma, T')$.

Proof. The first assertion follows from

$$(\Gamma, T) \le (\Gamma, T') \le \sigma((\Gamma, T'), \Gamma') = (\Gamma', T')$$

The second assertion follows from

$$(\Gamma,T) \leq (\Gamma',T') \leq \sigma((\Gamma',T'),\Gamma) = (\Gamma,T')$$

where the second \leq requires $\Gamma' \leq \Gamma$ which follows from ft-monotonicity and symmetry.

Lemma 1.9. [2014.07.12.13] Let C, \leq be as in Lemma 1.7, let \widetilde{C} be a subset of $\widetilde{Ob}(CC(R, LM))$ and \leq' a transitive relation on \widetilde{C} such that:

(1) $\mathcal{J} \leq' \mathcal{J}'$ implies $\partial(\mathcal{J}) \leq \partial(\mathcal{J}')$, (2) $\mathcal{J} \in \widetilde{C}$ and $\partial(\mathcal{J}) \leq F$ implies $\widetilde{\sigma}(\mathcal{J}, F) \in \widetilde{C}$ and $\mathcal{J} \leq' \widetilde{\sigma}(\mathcal{J}, F)$.

Then $\mathcal{J} \in \widetilde{C}$ and $ft^i(\partial(\mathcal{J})) \leq F$ for some $i \geq 0$ implies $\mathcal{J} \leq \widetilde{\sigma}(\mathcal{J}, F)$.

Proof. Simple induction on i.

Lemma 1.10. [2014.07.12.14] Let C, \leq and \widetilde{C}, \leq' be as in Lemma 1.9. Then one has:

- (1) $(\Gamma \vdash o: T) \leq' (\Gamma \vdash o': T)$ and $(\Gamma, T) \leq (\Gamma', T')$ implies that $(\Gamma \vdash o: T) \leq' (\Gamma' \vdash o': T')$,
- (2) if (\leq, \leq') is ∂ -monotone (i.e. $\mathcal{J} \leq' \mathcal{J}'$ implies $\partial(\mathcal{J}) \leq \partial(\mathcal{J}')$) and \leq is symmetric then $(\Gamma \vdash o: T) \leq' (\Gamma' \vdash o': T')$ implies that $(\Gamma \vdash o: T) \leq' (\Gamma \vdash o': T)$.

Proof. The first assertion follows from

 $(\Gamma \vdash o:T) \leq' (\Gamma \vdash o':T) \leq' \widetilde{\sigma}((\Gamma \vdash o':T), (\Gamma', T')) = (\Gamma' \vdash o':T')$

The second assertion follows from

 $\Gamma \vdash o:T) \leq' (\Gamma' \vdash o':T') \leq' \sigma((\Gamma' \vdash o':T'), (\Gamma,T)) = (\Gamma \vdash o':T)$

where the second \leq requires $\Gamma' \leq \Gamma$ which follows from ∂ -monotonicity of \leq' and symmetry of \leq .

Proposition 1.11. [2014.07.10.prop2] Let (C, \widetilde{C}) be subsets in Ob(CC(R, LM))and $\widetilde{Ob}(CC(R, LM))$ respectively which correspond to a C-subsystem CC of CC(R, LM). Then the constructions presented above establish a bijection between pairs of subsets (Ceq, \widetilde{Ceq}) which together with (C, \widetilde{C}) satisfy the conditions of Proposition 1.2 and pairs of equivalence relations (\sim, \simeq) on (C, \widetilde{C}) such that:

- (1) (\sim, \simeq) corresponds to a regular congruence relation on CC (i.e., satisfies the conditions of [?, Proposition 5.4]),
- (2) $\Gamma \in C$ and $ft(\Gamma) \sim F$ implies $\Gamma \sim \sigma(\Gamma, F)$,
- (3) $\mathcal{J} \in \widetilde{C}$ and $\partial(\mathcal{J}) \sim F$ implies $\mathcal{J} \simeq \widetilde{\sigma}(\mathcal{J}, F)$.

Proof. One constructs a pair (\sim, \simeq) from (Ceq, Ceq) as in Definition 1.1. This pair corresponds to a regular congruence relation by Proposition 1.2. Conditions (2),(3) follow from Lemma 1.3.

Let (\sim, \simeq) be equivalence relations satisfying the conditions of the proposition. Define Ceq as the set of sequences (Γ, T, T') such that $(\Gamma, T), (\Gamma, T') \in C$ and $(\Gamma, T) \sim (\Gamma, T')$. Define \widetilde{Ceq} as the set of sequences (Γ, T, o, o') such that $(\Gamma, T, o), (\Gamma, T, o') \in \widetilde{C}$ and $(\Gamma, T, o) \simeq (\Gamma, T, o')$.

Let us show that these subsets satisfy the conditions of Proposition 1.2. Conditions (2.a-2.d) and (3.a-3d) are obvious.

Condition (4a) follows from (2) by Lemma 1.7. Conditions (4b) and (4c) follow from (3) by Lemma 1.9.

Conditions (5a) and (5b) follow from the compatibility of (\sim, \simeq) with T and T.

Conditions (6a),(6b),(7a),(7b) follow from the compatibility of (\sim, \simeq) with S and \widetilde{S} .

School of Mathematics, Institute for Advanced Study, Princeton NJ, USA. E-mail: vladimir@ias.edu

 $\mathbf{6}$