# REGULAR SUB-QUOTIENTS OF THE C-SYSTEMS $C$ (RR,LM) 

VLADIMIR VOEVODSKY

## Abstract.

## Contents

1. Introduction 1
1.1. Regular sub-quotients of $C C(R, L M)$. 1

## 1. INTRODUCTION

1.1. Regular sub-quotients of $C C(R, L M)$. Let $(R, L M)$ be as above and

$$
\begin{gathered}
C e q \subset \coprod_{n \geq 0}\left(\prod_{i=0}^{n-1} L M(\widehat{i})\right) \times L M(\operatorname{stn}(n))^{2} \\
\widetilde{C e q} \subset \coprod_{n \geq 0}\left(\prod_{i=0}^{n} L M(\widehat{i})\right) \times R(\operatorname{stn}(n))^{2}
\end{gathered}
$$

be two subsets.
For $\Gamma=\left(T_{1}, \ldots, T_{n}\right) \in o b(C C(R, L M))$ and $S_{1}, S_{2} \in L M(\operatorname{stn}(n))$ we write $\left(\Gamma \vdash_{C e q}\right.$ $\left.S_{1}=S_{2}\right)$ to signify that $\left(T_{1}, \ldots, T_{n}, S_{1}, S_{2}\right) \in C e q$. Similarly for $T \in L M(\operatorname{stn}(n))$ and $o, o^{\prime} \in R(\operatorname{stn}(n))$ we write $\left(\Gamma \vdash_{\widetilde{C e q}} o=o^{\prime}: S\right)$ to signify that $\left(T_{1}, \ldots, T_{n}, S, o, o^{\prime}\right) \in$ $\widetilde{C e q}$. When no confusion is possible we will omit the subscripts $C e q$ and $\widetilde{C e q}$ at $\vdash$.

Similarly we will write $\triangleright$ instead of $\triangleright_{C}$ and $\vdash$ instead of $\vdash_{\widetilde{C}}$ if the subsets $C$ and $\widetilde{C}$ are unambiguously determined by the context.

Definition 1.1. /simandsimeq/ Given subsets $C, \widetilde{C}, C e q, \widetilde{C e q}$ as above define relations $\sim$ on $C$ and $\simeq$ on $\widetilde{C}$ as follows:
(1) for $\Gamma=\left(T_{1}, \ldots, T_{n}\right), \Gamma^{\prime}=\left(T_{1}^{\prime}, \ldots, T_{n}^{\prime}\right)$ in $C$ we set $\Gamma \sim \Gamma^{\prime}$ iff ft $(\Gamma) \sim f t\left(\Gamma^{\prime}\right)$ and

$$
T_{1}, \ldots, T_{n-1} \vdash T_{n}=T_{n}^{\prime}
$$

(2) for $(\Gamma \vdash o: S)$, $\left(\Gamma^{\prime} \vdash o^{\prime}: S^{\prime}\right)$ in $\widetilde{C}$ we set $(\Gamma \vdash o: S) \simeq\left(\Gamma^{\prime} \vdash o^{\prime}: S^{\prime}\right)$ iff $(\Gamma, S) \sim\left(\Gamma^{\prime}, S^{\prime}\right)$ and

$$
\left(\Gamma \vdash o=o^{\prime}: S\right)
$$

Proposition 1.2. [2014.07.10.prop1/ Let $C, \widetilde{C}, C e q, \widetilde{C e q}$ be as above and suppose in addition that one has:
(1) $C$ and $\widetilde{C}$ satisfy conditions (1)-(6) of Proposition ?? which are referred to below as conditions (1.1)-(1.6) of the present proposition,
(2)
(a) $\quad\left(\Gamma \vdash T=T^{\prime}\right) \Rightarrow(\Gamma, T \triangleright)$
(b) $\quad(\Gamma, T \triangleright) \Rightarrow(\Gamma \vdash T=T)$
(c) $\quad\left(\Gamma \vdash T=T^{\prime}\right) \Rightarrow\left(\Gamma \vdash T^{\prime}=T\right)$
(d) $\quad\left(\Gamma \vdash T=T^{\prime}\right) \wedge\left(\Gamma \vdash T^{\prime}=T^{\prime \prime}\right) \Rightarrow\left(\Gamma \vdash T=T^{\prime \prime}\right)$
(a) $\left(\Gamma \vdash o=o^{\prime}: T\right) \Rightarrow(\Gamma \vdash o: T)$
(b) $\quad(\Gamma \vdash o: T) \Rightarrow(\Gamma \vdash o=o: T)$
(c) $\quad\left(\Gamma \vdash o=o^{\prime}: T\right) \Rightarrow\left(\Gamma \vdash o^{\prime}=o: T\right)$
(d) $\quad\left(\Gamma \vdash o=o^{\prime}: T\right) \wedge\left(\Gamma \vdash o^{\prime}=o^{\prime \prime}: T\right) \Rightarrow\left(\Gamma \vdash o=o^{\prime \prime}: T\right)$
(a) $\left(\Gamma_{1} \vdash T=T^{\prime}\right) \wedge\left(\Gamma_{1}, T, \Gamma_{2} \vdash S=S^{\prime}\right) \Rightarrow\left(\Gamma_{1}, T^{\prime}, \Gamma_{2} \vdash S=S^{\prime}\right)$
(b) $\quad\left(\Gamma_{1} \vdash T=T^{\prime}\right) \wedge\left(\Gamma_{1}, T, \Gamma_{2} \vdash o=o^{\prime}: S\right) \Rightarrow\left(\Gamma_{1}, T^{\prime}, \Gamma_{2}^{\prime} \vdash o=o^{\prime}: S\right)$
(c) $\quad\left(\Gamma \vdash S=S^{\prime}\right) \wedge\left(\Gamma \vdash o=o^{\prime}: S\right) \Rightarrow\left(\Gamma \vdash o=o^{\prime}: S^{\prime}\right)$
(a) $\left(\Gamma_{1}, T \triangleright\right) \wedge\left(\Gamma_{1}, \Gamma_{2} \vdash S=S^{\prime}\right) \Rightarrow\left(\Gamma_{1}, T, t_{i+1} \Gamma_{2} \vdash t_{i+1} S=t_{i+1} S^{\prime}\right) \quad i=l(\Gamma)$
(b) $\quad\left(\Gamma_{1}, T \triangleright\right) \wedge\left(\Gamma_{1}, \Gamma_{2} \vdash o=o^{\prime}: S\right) \Rightarrow\left(\Gamma_{1}, T, t_{i+1} \Gamma_{2} \vdash t_{i+1} O=t_{i+1} o^{\prime}: t_{i+1} S\right) \quad i=l(\Gamma)$
(a) $\quad\left(\Gamma_{1}, T, \Gamma_{2} \vdash S=S^{\prime}\right) \wedge\left(\Gamma_{1} \vdash r: T\right) \Rightarrow$
$\left(\Gamma_{1}, s_{i+1}\left(\Gamma_{2}[r / i+1]\right) \vdash s_{i+1}(S[r / i+1])=s_{i+1}\left(S^{\prime}[r / i+1]\right)\right) \quad i=l\left(\Gamma_{1}\right)$
(b) $\quad\left(\Gamma_{1}, T, \Gamma_{2} \vdash o=o^{\prime}: S\right) \wedge\left(\Gamma_{1} \vdash r: T\right) \Rightarrow$
$\left(\Gamma_{1}, s_{i+1}\left(\Gamma_{2}[r / i+1]\right) \vdash s_{i+1}(o[r / i+1])=s_{i+1}\left(o^{\prime}[r / i+1]\right): s_{i+1}(S[r / i+1])\right) \quad i=l\left(\Gamma_{1}\right)$
(a) $\left(\Gamma_{1}, T, \Gamma_{2}, S \triangleright\right) \wedge\left(\Gamma_{1} \vdash r=r^{\prime}: T\right) \Rightarrow$
$\left(\Gamma_{1}, s_{i+1}\left(\Gamma_{2}[r / i+1]\right) \vdash s_{i+1}(S[r / i+1])=s_{i+1}\left(S\left[r^{\prime} / i+1\right]\right)\right) \quad i=l\left(\Gamma_{1}\right)$
(b) $\left(\Gamma_{1}, T, \Gamma_{2} \vdash o: S\right) \wedge\left(\Gamma_{1} \vdash r=r^{\prime}: T\right) \Rightarrow$
$\left(\Gamma_{1}, s_{i+1}\left(\Gamma_{2}[r / i+1]\right) \vdash s_{i+1}(o[r / i+1])=s_{i+1}\left(o\left[r^{\prime} / i+1\right]\right): s_{i+1}(S[r / i+1])\right) \quad i=l\left(\Gamma_{1}\right)$
Then the relations $\sim$ and $\simeq$ are equivalence relations on $C$ and $\widetilde{C}$ which satisfy the conditions of [?, Proposition 5.4] and therefore they correspond to a regular congruence relation on the $C$-system defined by $(C, \widetilde{C})$.

Lemma 1.3. [iseqrelsiml1/ One has:
(1) If conditions (1.2), (4a) of the proposition hold then $\left(\Gamma \vdash S=S^{\prime}\right) \wedge(\Gamma \sim$ $\left.\Gamma^{\prime}\right) \Rightarrow\left(\Gamma^{\prime} \vdash S=S^{\prime}\right)$.
(2) If conditions (1.2), (1.3), (4a), (4b), (4c) hold then $\left(\Gamma \vdash o=o^{\prime}: S\right) \wedge((\Gamma, S) \sim$ $\left.\left(\Gamma^{\prime}, S^{\prime}\right)\right) \Rightarrow\left(\Gamma^{\prime} \vdash o=o^{\prime}: S^{\prime}\right)$.

Proof. By induction on $n=l(\Gamma)=l\left(\Gamma^{\prime}\right)$.
(1) For $n=0$ the assertion is obvious. Therefore by induction we may assume that $\left(\Gamma \vdash S=S^{\prime}\right) \wedge\left(\Gamma \sim \Gamma^{\prime}\right) \Rightarrow\left(\Gamma^{\prime} \vdash S=S^{\prime}\right)$ for all $i<n$ and all appropriate $\Gamma, \Gamma^{\prime}$, $S$ and $S^{\prime}$ and that $\left(T_{1}, \ldots, T_{n} \vdash S=S^{\prime}\right) \wedge\left(T_{1}, \ldots, T_{n} \sim T_{1}^{\prime}, \ldots, T_{n}^{\prime}\right)$ holds and we need to show that $\left(T_{1}^{\prime}, \ldots, T_{n}^{\prime} \vdash S=S^{\prime}\right)$ holds. Let us show by induction on $j$ that $\left(T_{1}^{\prime}, \ldots, T_{j}^{\prime}, T_{j+1}, \ldots, T_{n} \vdash S=S^{\prime}\right)$ for all $j=0, \ldots, n$. For $j=0$ it is a part of our assumptions. By induction we may assume that $\left(T_{1}^{\prime}, \ldots, T_{j}^{\prime}, T_{j+1}, \ldots, T_{n} \vdash S=S^{\prime}\right)$. By definition of $\sim$ we have $\left(T_{1}, \ldots, T_{j} \vdash T_{j+1}=T_{j+1}^{\prime}\right)$. By the inductive assumption we have ( $T_{1}^{\prime}, \ldots, T_{j}^{\prime} \vdash T_{j+1}=T_{j+1}^{\prime}$ ). Applying (4a) with $\Gamma_{1}=\left(T_{1}^{\prime}, \ldots T_{j}^{\prime}\right), T=T_{j+1}$, $T^{\prime}=T_{j+1}^{\prime}$ and $\Gamma_{2}=\left(T_{j+2}, \ldots, T_{n}\right)$ we conclude that $\left(T_{1}^{\prime}, \ldots, T_{j+1}^{\prime}, T_{j+2}, \ldots, T_{n} \vdash S=\right.$ $\left.S^{\prime}\right)$.
(2) By the first part of the lemma we have $\Gamma^{\prime} \vdash S=S^{\prime}$. Therefore by (4c) it is sufficient to show that $\left(\Gamma \vdash o=o^{\prime}: S\right) \wedge\left(\Gamma \sim \Gamma^{\prime}\right) \Rightarrow\left(\Gamma^{\prime} \vdash o=o^{\prime}: S\right)$. The proof of this fact is similar to the proof of the first part of the lemma using (4b) instead of (4a).

Lemma 1.4. /iseqrelsim/ One has:
(1) Assume that conditions (1.2), (2b), (2c), (2d) and (4a) hold. Then $\sim$ is an equivalence relation.
(2) Assume that conditions of the previous part of the lemma as well as conditions (1.3), (3b), (3c), (3d), (4b) and (4c) hold. Then $\simeq$ is an equivalence relation.

Proof. By induction on $n=l(\Gamma)=l\left(\Gamma^{\prime}\right)$.
(1) Reflexivity follows directly from (1.2) and (2b). For $n=0$ the symmetry is obvious. Let $(\Gamma, T) \sim\left(\Gamma^{\prime}, T^{\prime}\right)$. By induction we may assume that $\Gamma^{\prime} \sim \Gamma$. By Lemma 1.3(a) we have $\left(\Gamma^{\prime} \vdash T=T^{\prime}\right)$ and by (2c) we have $\left(\Gamma^{\prime} \vdash T^{\prime}=T\right)$. We conclude that $\left(\Gamma^{\prime}, T^{\prime}\right) \sim(\Gamma, T)$. The proof of transitivity is by a similar induction.
(2) Reflexivity follows directly from reflexivity of $\sim$, (1.3) and (3b). Symmetry and transitivity are also easy using Lemma 1.3 .

From this point on we assume that all conditions of Proposition 1.2 hold. Let $C^{\prime}=C / \sim$ and $\widetilde{C}^{\prime}=\widetilde{C} / \simeq$. It follows immediately from our definitions that the functions $f t: C \rightarrow C$ and $\partial: \widetilde{C} \rightarrow C$ define functions $f t^{\prime}: C^{\prime} \rightarrow C^{\prime}$ and $\partial^{\prime}: \widetilde{C}^{\prime} \rightarrow C^{\prime}$.

Lemma 1.5. [surjl1/ The conditions (3) and (4) of [?, Proposition 5.4] hold for ~ and $\simeq$.

Proof. 1. We need to show that for $(\Gamma, T \triangleright)$, and $\Gamma \sim \Gamma^{\prime}$ there exists ( $\left.\Gamma^{\prime}, T^{\prime} \triangleright\right)$ such that $(\Gamma, T) \sim\left(\Gamma^{\prime}, T^{\prime}\right)$. It is sufficient to take $T=T^{\prime}$. Indeed by ( 2 b ) we have $\Gamma \vdash T=T$, by Lemma 1.3(1) we conclude that $\Gamma^{\prime} \vdash T=T$ and by (1a) that $\Gamma^{\prime}, T \triangleright$.
2. We need to show that for $(\Gamma \vdash o: S)$ and $(\Gamma, S) \sim\left(\Gamma^{\prime}, S^{\prime}\right)$ there exists $\left(\Gamma^{\prime} \vdash o^{\prime}\right.$ : $\left.S^{\prime}\right)$ such that $\left(\Gamma^{\prime} \vdash o^{\prime}: S^{\prime}\right) \simeq(\Gamma \vdash o: S)$. It is sufficient to take $o^{\prime}=o$. Indeed, by (3b) we have $(\Gamma \vdash o=o: S)$, by Lemma $1.3(2)$ we conclude that $\left(\Gamma^{\prime} \vdash o=o: S^{\prime}\right)$ and by (2a) that $\left(\Gamma^{\prime} \vdash o: S^{\prime}\right)$.

Lemma 1.6. /TSetc/ The equivalence relations $\sim$ and $\simeq$ are compatible with the operations $T, \widetilde{T}, S, \widetilde{S}$ and $\delta$.

Proof. (1) Given $\left(\Gamma_{1}, T \triangleright\right) \sim\left(\Gamma_{1}^{\prime}, T^{\prime} \triangleright\right)$ and $\left(\Gamma_{1}, \Gamma_{2} \triangleright\right) \sim\left(\Gamma_{1}^{\prime}, \Gamma_{2}^{\prime} \triangleright\right)$ we have to show that

$$
\left(\Gamma_{1}, T, t_{n+1} \Gamma_{2}\right) \sim\left(\Gamma_{1}^{\prime}, T^{\prime}, t_{n+1} \Gamma_{2}^{\prime}\right)
$$

where $n=l\left(\Gamma_{1}\right)=l\left(\Gamma_{1}^{\prime}\right)$.
Proceed by induction on $l\left(\Gamma_{2}\right)$. For $l\left(\Gamma_{2}\right)=0$ the assertion is obvious. Let $\left(\Gamma_{1}, T \triangleright\right) \sim\left(\Gamma_{1}^{\prime}, T^{\prime} \triangleright\right)$ and $\left(\Gamma_{1}, \Gamma_{2}, S \triangleright\right) \sim\left(\Gamma_{1}^{\prime}, \Gamma_{2}^{\prime}, S^{\prime} \triangleright\right)$. The later condition is equivalent to $\left(\Gamma_{1}, \Gamma_{2} \triangleright\right) \sim\left(\Gamma_{1}^{\prime}, \Gamma_{2}^{\prime} \triangleright\right)$ and $\left(\Gamma_{1}, \Gamma_{2} \vdash S=S^{\prime}\right)$. By the inductive assumption we have $\left(\Gamma_{1}, T, t_{n+1} \Gamma_{2}\right) \sim\left(\Gamma_{1}^{\prime}, T^{\prime}, t_{n+1} \Gamma_{2}^{\prime}\right)$. By (5a) we conclude that $\left(\Gamma_{1}, T, t_{n+1} \Gamma_{2} \vdash\right.$ $\left.t_{n+1} S=t_{n+1} S^{\prime}\right)$. Therefore by definition of $\sim$ we have $\left(\Gamma_{1}, T, t_{n+1} \Gamma_{2}, t_{n+1} S\right) \sim$ $\left(\Gamma_{1}^{\prime}, T^{\prime}, t_{n+1} \Gamma_{2}^{\prime}, t_{n+1} S^{\prime}\right)$.
(2) Given $\left(\Gamma_{1}, T \triangleright\right) \sim\left(\Gamma_{1}^{\prime}, T^{\prime} \triangleright\right)$ and $\left(\Gamma_{1}, \Gamma_{2} \vdash o: S\right) \simeq\left(\Gamma_{1}^{\prime}, \Gamma_{2}^{\prime} \vdash o^{\prime}: S^{\prime}\right)$ we have to show that $\left(\Gamma_{1}, T, t_{n+1} \Gamma_{2} \vdash t_{n+1} o: t_{n+1} S\right) \simeq\left(\Gamma_{1}^{\prime}, T^{\prime}, t_{n+1} \Gamma_{2}^{\prime} \vdash t_{n+1} o^{\prime}: t_{n+1} S^{\prime}\right)$ where $n=l\left(\Gamma_{1}\right)=l\left(\Gamma_{1}^{\prime}\right)$. We have $\left(\Gamma_{1}, \Gamma_{2}, S\right) \sim\left(\Gamma_{1}^{\prime}, \Gamma_{2}^{\prime}, S^{\prime}\right)$ and $\left(\Gamma_{1}, \Gamma_{2} \vdash o=o^{\prime}: S\right)$. By (5b) we get $\left(\Gamma_{1}, T, t_{n+1} \Gamma_{2} \vdash t_{n+1} o=t_{n+1} o^{\prime}: t_{n+1} S\right)$. By (1) of this lemma we get $\left(\Gamma_{1}, T, t_{n+1} \Gamma_{2}, t_{n+1} S\right) \sim\left(\Gamma_{1}^{\prime}, T^{\prime}, t_{n+1} \Gamma_{2}^{\prime}, t_{n+1} S^{\prime}\right)$ and therefore by definition of $\simeq$ we get $\left(\Gamma_{1}, T, t_{n+1} \Gamma_{2} \vdash t_{n+1} o: t_{n+1} S\right) \simeq\left(\Gamma_{1}^{\prime}, T^{\prime}, t_{n+1} \Gamma_{2}^{\prime} \vdash t_{n+1} o^{\prime}: t_{n+1} S^{\prime}\right)$.
(3) Given $\left(\Gamma_{1} \vdash r: T\right) \simeq\left(\Gamma_{1}^{\prime} \vdash r^{\prime}: T^{\prime}\right)$ and $\left(\Gamma_{1}, T, \Gamma_{2} \triangleright\right) \sim\left(\Gamma_{1}^{\prime}, T^{\prime}, \Gamma_{2}^{\prime} \triangleright\right)$ we have to show that

$$
\left(\Gamma_{1}, s_{n+1}\left(\Gamma_{2}[r / n+1]\right)\right) \sim\left(\Gamma_{1}^{\prime}, s_{n+1}\left(\Gamma_{2}^{\prime}\left[r^{\prime} / n+1\right]\right)\right) .
$$

where $n=l\left(\Gamma_{1}\right)=l\left(\Gamma_{1}^{\prime}\right)$. Proceed by induction on $l\left(\Gamma_{2}\right)$. For $l\left(\Gamma_{2}\right)=0$ the assertion follows directly from the definitions. Let $\left(\Gamma_{1} \vdash r: T\right) \simeq\left(\Gamma_{1}^{\prime} \vdash r^{\prime}\right.$ : $\left.T^{\prime}\right)$ and $\left(\Gamma_{1}, T, \Gamma_{2}, S \triangleright\right) \sim\left(\Gamma_{1}^{\prime}, T^{\prime}, \Gamma_{2}^{\prime}, S^{\prime} \triangleright\right)$. The later condition is equivalent to $\left(\Gamma_{1}, T, \Gamma_{2} \triangleright\right) \sim\left(\Gamma_{1}^{\prime}, T^{\prime}, \Gamma_{2}^{\prime} \triangleright\right)$ and $\left(\Gamma_{1}, T, \Gamma_{2} \vdash S=S^{\prime}\right)$. By the inductive assumption we have $\left(\Gamma_{1}, s_{n+1}\left(\Gamma_{2}[r / n+1]\right)\right) \sim\left(\Gamma_{1}^{\prime}, s_{n+1}\left(\Gamma_{2}^{\prime}\left[r^{\prime} / n+1\right]\right)\right)$. It remains to show that $\left(\Gamma_{1}, s_{n+1}\left(\Gamma_{2}[r / n+1]\right) \vdash s_{n+1}(S[r / n+1])=s_{n+1}\left(S^{\prime}\left[r^{\prime} / n+1\right]\right)\right)$. By (2d) it is sufficient to show that $\left(\Gamma_{1}, s_{n+1}\left(\Gamma_{2}[r / n+1]\right) \vdash s_{n+1}(S[r / n+1])=s_{n+1}\left(S^{\prime}[r / n+1]\right)\right)$ and $\left(\Gamma_{1}, s_{n+1}\left(\Gamma_{2}[r / n+1]\right) \vdash s_{n+1}\left(S^{\prime}[r / n+1]\right)=s_{n+1}\left(S^{\prime}\left[r^{\prime} / n+1\right]\right)\right)$. The first relation follows directly from (6a). To prove the second one it is sufficient by (7a) to show that $\left(\Gamma_{1}, T, \Gamma_{2}, S^{\prime} \triangleright\right)$ which follows from our assumption through (2c) and (2a).
(4) Given $\left(\Gamma_{1} \vdash r: T\right) \simeq\left(\Gamma_{1}^{\prime} \vdash r^{\prime}: T^{\prime}\right)$ and $\left(\Gamma_{1}, T, \Gamma_{2} \vdash o: S\right) \simeq\left(\Gamma_{1}^{\prime}, T^{\prime}, \Gamma_{2}^{\prime} \vdash o^{\prime}: S^{\prime}\right)$ we have to show that

$$
\begin{aligned}
& \left(\Gamma_{1}, s_{n+1}\left(\Gamma_{2}[r / n+1]\right) \vdash s_{n+1}(o[r / n+1]): s_{n+1}(S[r / n+1])\right) \simeq \\
& \left(\Gamma_{1}^{\prime}, s_{n+1}\left(\Gamma_{2}^{\prime}\left[r^{\prime} / n+1\right]\right) \vdash s_{n+1}\left(o^{\prime}\left[r^{\prime} / n+1\right]\right): s_{n+1}\left(S^{\prime}\left[r^{\prime} / n+1\right]\right)\right) .
\end{aligned}
$$

where $n=l\left(\Gamma_{1}\right)=l\left(\Gamma_{1}^{\prime}\right)$ or equivalently that
$\left(\Gamma_{1}, s_{n+1}\left(\Gamma_{2}[r / n+1]\right), s_{n+1}(S[r / n+1])\right) \sim\left(\Gamma_{1}^{\prime}, s_{n+1}\left(\Gamma_{2}^{\prime}\left[r^{\prime} / n+1\right]\right), s_{n+1}\left(S^{\prime}\left[r^{\prime} / n+1\right]\right)\right)$ and $\left(\Gamma_{1}, s_{n+1}\left(\Gamma_{2}[r / n+1]\right) \vdash s_{n+1}(o[r / n+1])=s_{n+1}\left(o^{\prime}\left[r^{\prime} / n+1\right]\right): s_{n+1}(S[r / n+1])\right)$. The first statement follows from part (3) of the lemma. To prove the second statement it is sufficient by (3d) to show that $\left(\Gamma_{1}, s_{n+1}\left(\Gamma_{2}[r / n+1]\right) \vdash s_{n+1}(o[r / n+1])=\right.$ $\left.s_{n+1}\left(o^{\prime}[r / n+1]\right): s_{n+1}(S[r / n+1])\right)$ and $\left(\Gamma_{1}, s_{n+1}\left(\Gamma_{2}[r / n+1]\right) \vdash s_{n+1}\left(o^{\prime}[r / n+1]\right)=\right.$ $\left.s_{n+1}\left(o^{\prime}\left[r^{\prime} / n+1\right]\right): s_{n+1}(S[r / n+1])\right)$. The first assertion follows directly from (6b).

To prove the second one it is sufficient in view of $(7 \mathrm{~b})$ to show that $\left(\Gamma_{1}, T, \Gamma_{2} \vdash o^{\prime}: S\right)$ which follows conditions (3c) and (3a).
(5) Given $(\Gamma, T) \sim\left(\Gamma^{\prime}, T^{\prime}\right)$ we need to show that $(\Gamma, T \vdash(n+1): T) \simeq\left(\Gamma^{\prime}, T^{\prime} \vdash(n+\right.$ 1) : $T^{\prime}$ ) or equivalently that $(\Gamma, T, T) \sim\left(\Gamma, T^{\prime}, T^{\prime}\right)$ and $(\Gamma, T \vdash(n+1)=(n+1): T)$. The second part follows from (3b). To prove the first part we need to show that $\left(\Gamma, T \vdash T=T^{\prime}\right)$. This follows from our assumption by (5a).

Lemma 1.7. [2014.07.12.11] Let $C$ be a subset of $\operatorname{Ob}(C C(R, L M))$ which is closed under ft. Let $\leq$ be a transitive relation on $C$ such that:
(1) $\Gamma \leq \Gamma^{\prime}$ implies $l(\Gamma)=l\left(\Gamma^{\prime}\right)$,
(2) $\Gamma \in C$ and $f t(\Gamma) \leq F$ implies $\sigma(\Gamma, F) \in C$ and $\Gamma \leq \sigma(\Gamma, F)$.

Then $\Gamma \in C$ and $f t^{i}(\Gamma) \leq F$ for some $i \geq 1$, implies that $\Gamma \leq \sigma(\Gamma, F)$.
Proof. Simple induction on $i$.
Lemma 1.8. [2014.07.12.12] Let $C$ and $\leq$ be as in Lemma 1.7. Then one has:
(1) $(\Gamma, T) \leq\left(\Gamma, T^{\prime}\right)$ and $\Gamma \leq \Gamma^{\prime}$ implies that $(\Gamma, T) \leq\left(\Gamma^{\prime}, T^{\prime}\right)$,
(2) if $\leq$ is ft-monotone (i.e. $\Gamma \leq \Gamma^{\prime}$ implies $f t(\Gamma) \leq f t\left(\Gamma^{\prime}\right)$ ) and symmetric then $(\Gamma, T) \leq\left(\Gamma^{\prime}, T^{\prime}\right)$ implies that $(\Gamma, T) \leq\left(\Gamma, T^{\prime}\right)$.

Proof. The first assertion follows from

$$
(\Gamma, T) \leq\left(\Gamma, T^{\prime}\right) \leq \sigma\left(\left(\Gamma, T^{\prime}\right), \Gamma^{\prime}\right)=\left(\Gamma^{\prime}, T^{\prime}\right)
$$

The second assertion follows from

$$
(\Gamma, T) \leq\left(\Gamma^{\prime}, T^{\prime}\right) \leq \sigma\left(\left(\Gamma^{\prime}, T^{\prime}\right), \Gamma\right)=\left(\Gamma, T^{\prime}\right)
$$

where the second $\leq$ requires $\Gamma^{\prime} \leq \Gamma$ which follows from $f t$-monotonicity and symmetry.
Lemma 1.9. [2014.07.12.13] Let $C, \leq$ be as in Lemma 1.7. let $\widetilde{C}$ be a subset of $\widetilde{O b}(C C(R, L M))$ and $\leq^{\prime}$ a transitive relation on $\widetilde{C}$ such that:
(1) $\mathcal{J} \leq^{\prime} \mathcal{J}^{\prime}$ implies $\partial(\mathcal{J}) \leq \partial\left(\mathcal{J}^{\prime}\right)$,
(2) $\mathcal{J} \in \widetilde{C}$ and $\partial(\mathcal{J}) \leq F$ implies $\widetilde{\sigma}(\mathcal{J}, F) \in \widetilde{C}$ and $\mathcal{J} \leq \leq^{\prime} \widetilde{\sigma}(\mathcal{J}, F)$.

Then $\mathcal{J} \in \widetilde{C}$ and $f t^{i}(\partial(\mathcal{J})) \leq F$ for some $i \geq 0$ implies $\mathcal{J} \leq \widetilde{\sigma}(\mathcal{J}, F)$.
Proof. Simple induction on $i$.
Lemma 1.10. [2014.07.12.14] Let $C, \leq$ and $\widetilde{C}, \leq^{\prime}$ be as in Lemma 1.9. Then one has:
(1) $(\Gamma \vdash o: T) \leq^{\prime}\left(\Gamma \vdash o^{\prime}: T\right)$ and $(\Gamma, T) \leq\left(\Gamma^{\prime}, T^{\prime}\right)$ implies that $(\Gamma \vdash o: T) \leq^{\prime}$ $\left(\Gamma^{\prime} \vdash o^{\prime}: T^{\prime}\right)$,
(2) if $\left(\leq, \leq^{\prime}\right)$ is $\partial$-monotone (i.e. $\mathcal{J} \leq \mathcal{J}^{\prime}$ implies $\partial(\mathcal{J}) \leq \partial\left(\mathcal{J}^{\prime}\right)$ ) and $\leq$ is symmetric then $(\Gamma \vdash o: T) \leq^{\prime}\left(\Gamma^{\prime} \vdash o^{\prime}: T^{\prime}\right)$ implies that $(\Gamma \vdash o: T) \leq^{\prime}(\Gamma \vdash$ $\left.o^{\prime}: T\right)$.

Proof. The first assertion follows from

$$
(\Gamma \vdash o: T) \leq^{\prime}\left(\Gamma \vdash o^{\prime}: T\right) \leq^{\prime} \widetilde{\sigma}\left(\left(\Gamma \vdash o^{\prime}: T\right),\left(\Gamma^{\prime}, T^{\prime}\right)\right)=\left(\Gamma^{\prime} \vdash o^{\prime}: T^{\prime}\right)
$$

The second assertion follows from

$$
\Gamma \vdash o: T) \leq^{\prime}\left(\Gamma^{\prime} \vdash o^{\prime}: T^{\prime}\right) \leq^{\prime} \sigma\left(\left(\Gamma^{\prime} \vdash o^{\prime}: T^{\prime}\right),(\Gamma, T)\right)=\left(\Gamma \vdash o^{\prime}: T\right)
$$

where the second $\leq$ requires $\Gamma^{\prime} \leq \Gamma$ which follows from $\partial$-monotonicity of $\leq^{\prime}$ and symmetry of $\leq$.

Proposition 1.11. [2014.07.10.prop2] Let $(C, \widetilde{C})$ be subsets in $\operatorname{Ob}(C C(R, L M))$ and $\widetilde{O b}(C C(R, L M))$ respectively which correspond to a $C$-subsystem $C C$ of $C C(R, L M)$. Then the constructions presented above establish a bijection between pairs of subsets $(C e q, \widetilde{C e q})$ which together with $(C, \widetilde{C})$ satisfy the conditions of Proposition 1.2 and pairs of equivalence relations $(\sim, \simeq)$ on $(C, \widetilde{C})$ such that:
(1) $(\sim, \simeq)$ corresponds to a regular congruence relation on $C C$ (i.e., satisfies the conditions of [?, Proposition 5.4]),
(2) $\Gamma \in C$ and $f t(\Gamma) \sim F$ implies $\Gamma \sim \sigma(\Gamma, F)$,
(3) $\mathcal{J} \in \widetilde{C}$ and $\partial(\mathcal{J}) \sim F$ implies $\mathcal{J} \simeq \widetilde{\sigma}(\mathcal{J}, F)$.

Proof. One constructs a pair $(\sim, \simeq)$ from $(C e q, \widetilde{C e q})$ as in Definition 1.1. This pair corresponds to a regular congruence relation by Proposition 1.2. Conditions (2),(3) follow from Lemma 1.3 .

Let $(\sim, \simeq)$ be equivalence relations satisfying the conditions of the proposition. Define $C e q$ as the set of sequences $\left(\Gamma, T, T^{\prime}\right)$ such that $(\Gamma, T),\left(\Gamma, T^{\prime}\right) \in C$ and $(\Gamma, T) \sim$ $\left(\Gamma, T^{\prime}\right)$. Define $\widetilde{C e q}$ as the set of sequences $\left(\Gamma, T, o, o^{\prime}\right)$ such that $(\Gamma, T, o),\left(\Gamma, T, o^{\prime}\right) \in \widetilde{C}$ and $(\Gamma, T, o) \simeq\left(\Gamma, T, o^{\prime}\right)$.

Let us show that these subsets satisfy the conditions of Proposition 1.2. Conditions (2.a-2.d) and (3.a-3d) are obvious.

Condition (4a) follows from (2) by Lemma 1.7. Conditions (4b) and (4c) follow from (3) by Lemma 1.9 .

Conditions (5a) and (5b) follow from the compatibility of ( $\sim, \simeq)$ with $T$ and $\widetilde{T}$.
Conditions (6a),(6b),(7a),(7b) follow from the compatibility of ( $\sim, \simeq$ ) with $S$ and $\widetilde{S}$.

School of Mathematics, Institute for Advanced Study, Princeton NJ, USA. e-mall: VLADIMIR@IAS.EDU

