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1. Introduction

1.1. Regular sub-quotients of CC(R,LM). Let (R,LM) be as above and

Ceq ⊂
∐
n≥0

(
n−1∏
i=0

LM (̂i))× LM(stn(n))2

C̃eq ⊂
∐
n≥0

(
n∏

i=0

LM (̂i))×R(stn(n))2

be two subsets.

For Γ = (T1, . . . , Tn) ∈ ob(CC(R,LM)) and S1, S2 ∈ LM(stn(n)) we write (Γ `Ceq

S1 = S2) to signify that (T1, . . . , Tn, S1, S2) ∈ Ceq. Similarly for T ∈ LM(stn(n)) and
o, o′ ∈ R(stn(n)) we write (Γ `C̃eq o = o′ : S) to signify that (T1, . . . , Tn, S, o, o

′) ∈
C̃eq. When no confusion is possible we will omit the subscripts Ceq and C̃eq at `.

Similarly we will write B instead of BC and ` instead of `C̃ if the subsets C and
C̃ are unambiguously determined by the context.

Definition 1.1. [simandsimeq] Given subsets C, C̃, Ceq, C̃eq as above define
relations ∼ on C and ' on C̃ as follows:

(1) for Γ = (T1, . . . , Tn), Γ′ = (T ′1, . . . , T
′
n) in C we set Γ ∼ Γ′ iff ft(Γ) ∼ ft(Γ′)

and
T1, . . . , Tn−1 ` Tn = T ′n,

(2) for (Γ ` o : S), (Γ′ ` o′ : S ′) in C̃ we set (Γ ` o : S) ' (Γ′ ` o′ : S ′) iff
(Γ, S) ∼ (Γ′, S ′) and

(Γ ` o = o′ : S).
1
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Proposition 1.2. [2014.07.10.prop1] Let C, C̃, Ceq, C̃eq be as above and suppose
in addition that one has:

(1) C and C̃ satisfy conditions (1)-(6) of Proposition ?? which are referred to
below as conditions (1.1)-(1.6) of the present proposition,

(2)
(a) (Γ ` T = T ′)⇒(Γ, TB)
(b) (Γ, TB)⇒(Γ ` T = T )
(c) (Γ ` T = T ′)⇒(Γ ` T ′ = T )
(d) (Γ ` T = T ′) ∧ (Γ ` T ′ = T ′′)⇒(Γ ` T = T ′′)

(3)
(a) (Γ ` o = o′ : T )⇒(Γ ` o : T )
(b) (Γ ` o : T )⇒(Γ ` o = o : T )
(c) (Γ ` o = o′ : T )⇒(Γ ` o′ = o : T )
(d) (Γ ` o = o′ : T ) ∧ (Γ ` o′ = o′′ : T )⇒(Γ ` o = o′′ : T )

(4)

(a) (Γ1 ` T = T ′) ∧ (Γ1, T,Γ2 ` S = S ′)⇒(Γ1, T
′,Γ2 ` S = S ′)

(b) (Γ1 ` T = T ′) ∧ (Γ1, T,Γ2 ` o = o′ : S)⇒(Γ1, T
′,Γ′2 ` o = o′ : S)

(c) (Γ ` S = S ′) ∧ (Γ ` o = o′ : S)⇒(Γ ` o = o′ : S ′)

(5)

(a) (Γ1, TB) ∧ (Γ1,Γ2 ` S = S ′)⇒(Γ1, T, ti+1Γ2 ` ti+1S = ti+1S
′) i = l(Γ)

(b) (Γ1, TB) ∧ (Γ1,Γ2 ` o = o′ : S)⇒(Γ1, T, ti+1Γ2 ` ti+1o = ti+1o
′ : ti+1S) i = l(Γ)

(6)

(a) (Γ1, T,Γ2 ` S = S ′) ∧ (Γ1 ` r : T )⇒
(Γ1, si+1(Γ2[r/i+ 1]) ` si+1(S[r/i+ 1]) = si+1(S

′[r/i+ 1])) i = l(Γ1)
(b) (Γ1, T,Γ2 ` o = o′ : S) ∧ (Γ1 ` r : T )⇒
(Γ1, si+1(Γ2[r/i+ 1]) ` si+1(o[r/i+ 1]) = si+1(o

′[r/i+ 1]) : si+1(S[r/i+ 1])) i = l(Γ1)

(7)

(a) (Γ1, T,Γ2, SB) ∧ (Γ1 ` r = r′ : T )⇒
(Γ1, si+1(Γ2[r/i+ 1]) ` si+1(S[r/i+ 1]) = si+1(S[r′/i+ 1])) i = l(Γ1)
(b) (Γ1, T,Γ2 ` o : S) ∧ (Γ1 ` r = r′ : T )⇒
(Γ1, si+1(Γ2[r/i+ 1]) ` si+1(o[r/i+ 1]) = si+1(o[r

′/i+ 1]) : si+1(S[r/i+ 1])) i = l(Γ1)

Then the relations ∼ and ' are equivalence relations on C and C̃ which satisfy the
conditions of [?, Proposition 5.4] and therefore they correspond to a regular congruence
relation on the C-system defined by (C, C̃).

Lemma 1.3. [iseqrelsiml1] One has:

(1) If conditions (1.2), (4a) of the proposition hold then (Γ ` S = S ′) ∧ (Γ ∼
Γ′)⇒(Γ′ ` S = S ′).

(2) If conditions (1.2), (1.3), (4a), (4b), (4c) hold then (Γ ` o = o′ : S)∧((Γ, S) ∼
(Γ′, S ′))⇒(Γ′ ` o = o′ : S ′).
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Proof. By induction on n = l(Γ) = l(Γ′).

(1) For n = 0 the assertion is obvious. Therefore by induction we may assume
that (Γ ` S = S ′) ∧ (Γ ∼ Γ′)⇒(Γ′ ` S = S ′) for all i < n and all appropriate Γ,Γ′,
S and S ′ and that (T1, . . . , Tn ` S = S ′) ∧ (T1, . . . , Tn ∼ T ′1, . . . , T

′
n) holds and we

need to show that (T ′1, . . . , T
′
n ` S = S ′) holds. Let us show by induction on j that

(T ′1, . . . , T
′
j , Tj+1, . . . , Tn ` S = S ′) for all j = 0, . . . , n. For j = 0 it is a part of our

assumptions. By induction we may assume that (T ′1, . . . , T
′
j , Tj+1, . . . , Tn ` S = S ′).

By definition of ∼ we have (T1, . . . , Tj ` Tj+1 = T ′j+1). By the inductive assumption
we have (T ′1, . . . , T

′
j ` Tj+1 = T ′j+1). Applying (4a) with Γ1 = (T ′1, . . . T

′
j), T = Tj+1,

T ′ = T ′j+1 and Γ2 = (Tj+2, . . . , Tn) we conclude that (T ′1, . . . , T
′
j+1, Tj+2, . . . , Tn ` S =

S ′).

(2) By the first part of the lemma we have Γ′ ` S = S ′. Therefore by (4c) it is
sufficient to show that (Γ ` o = o′ : S) ∧ (Γ ∼ Γ′)⇒(Γ′ ` o = o′ : S). The proof of
this fact is similar to the proof of the first part of the lemma using (4b) instead of
(4a). �

Lemma 1.4. [iseqrelsim] One has:

(1) Assume that conditions (1.2), (2b), (2c), (2d) and (4a) hold. Then ∼ is an
equivalence relation.

(2) Assume that conditions of the previous part of the lemma as well as conditions
(1.3), (3b), (3c), (3d), (4b) and (4c) hold. Then ' is an equivalence relation.

Proof. By induction on n = l(Γ) = l(Γ′).

(1) Reflexivity follows directly from (1.2) and (2b). For n = 0 the symmetry is
obvious. Let (Γ, T ) ∼ (Γ′, T ′). By induction we may assume that Γ′ ∼ Γ. By Lemma
1.3(a) we have (Γ′ ` T = T ′) and by (2c) we have (Γ′ ` T ′ = T ). We conclude that
(Γ′, T ′) ∼ (Γ, T ). The proof of transitivity is by a similar induction.

(2) Reflexivity follows directly from reflexivity of ∼, (1.3) and (3b). Symmetry and
transitivity are also easy using Lemma 1.3. �

From this point on we assume that all conditions of Proposition 1.2 hold. Let
C ′ = C/ ∼ and C̃ ′ = C̃/ '. It follows immediately from our definitions that the
functions ft : C → C and ∂ : C̃ → C define functions ft′ : C ′ → C ′ and ∂′ : C̃ ′ → C ′.

Lemma 1.5. [surjl1] The conditions (3) and (4) of [?, Proposition 5.4] hold for ∼
and '.

Proof. 1. We need to show that for (Γ, TB), and Γ ∼ Γ′ there exists (Γ′, T ′B) such
that (Γ, T ) ∼ (Γ′, T ′). It is sufficient to take T = T ′. Indeed by (2b) we have
Γ ` T = T , by Lemma 1.3(1) we conclude that Γ′ ` T = T and by (1a) that Γ′, TB.

2. We need to show that for (Γ ` o : S) and (Γ, S) ∼ (Γ′, S ′) there exists (Γ′ ` o′ :
S ′) such that (Γ′ ` o′ : S ′) ' (Γ ` o : S). It is sufficient to take o′ = o. Indeed, by
(3b) we have (Γ ` o = o : S), by Lemma 1.3(2) we conclude that (Γ′ ` o = o : S ′)
and by (2a) that (Γ′ ` o : S ′). �
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Lemma 1.6. [TSetc] The equivalence relations ∼ and ' are compatible with the
operations T, T̃ , S, S̃ and δ.

Proof. (1) Given (Γ1, TB) ∼ (Γ′1, T
′B) and (Γ1,Γ2B) ∼ (Γ′1,Γ

′
2B) we have to show

that
(Γ1, T, tn+1Γ2) ∼ (Γ′1, T

′, tn+1Γ
′
2).

where n = l(Γ1) = l(Γ′1).

Proceed by induction on l(Γ2). For l(Γ2) = 0 the assertion is obvious. Let
(Γ1, TB) ∼ (Γ′1, T

′B) and (Γ1,Γ2, SB) ∼ (Γ′1,Γ
′
2, S

′B). The later condition is equiva-
lent to (Γ1,Γ2B) ∼ (Γ′1,Γ

′
2B) and (Γ1,Γ2 ` S = S ′). By the inductive assumption we

have (Γ1, T, tn+1Γ2) ∼ (Γ′1, T
′, tn+1Γ

′
2). By (5a) we conclude that (Γ1, T, tn+1Γ2 `

tn+1S = tn+1S
′). Therefore by definition of ∼ we have (Γ1, T, tn+1Γ2, tn+1S) ∼

(Γ′1, T
′, tn+1Γ

′
2, tn+1S

′).

(2) Given (Γ1, TB) ∼ (Γ′1, T
′B) and (Γ1,Γ2 ` o : S) ' (Γ′1,Γ

′
2 ` o′ : S ′) we have

to show that (Γ1, T, tn+1Γ2 ` tn+1o : tn+1S) ' (Γ′1, T
′, tn+1Γ

′
2 ` tn+1o

′ : tn+1S
′) where

n = l(Γ1) = l(Γ′1). We have (Γ1,Γ2, S) ∼ (Γ′1,Γ
′
2, S

′) and (Γ1,Γ2 ` o = o′ : S). By
(5b) we get (Γ1, T, tn+1Γ2 ` tn+1o = tn+1o

′ : tn+1S). By (1) of this lemma we get
(Γ1, T, tn+1Γ2, tn+1S) ∼ (Γ′1, T

′, tn+1Γ
′
2, tn+1S

′) and therefore by definition of ' we
get (Γ1, T, tn+1Γ2 ` tn+1o : tn+1S) ' (Γ′1, T

′, tn+1Γ
′
2 ` tn+1o

′ : tn+1S
′).

(3) Given (Γ1 ` r : T ) ' (Γ′1 ` r′ : T ′) and (Γ1, T,Γ2B) ∼ (Γ′1, T
′,Γ′2B) we have to

show that
(Γ1, sn+1(Γ2[r/n+ 1])) ∼ (Γ′1, sn+1(Γ

′
2[r
′/n+ 1])).

where n = l(Γ1) = l(Γ′1). Proceed by induction on l(Γ2). For l(Γ2) = 0 the
assertion follows directly from the definitions. Let (Γ1 ` r : T ) ' (Γ′1 ` r′ :
T ′) and (Γ1, T,Γ2, SB) ∼ (Γ′1, T

′,Γ′2, S
′B). The later condition is equivalent to

(Γ1, T,Γ2B) ∼ (Γ′1, T
′,Γ′2B) and (Γ1, T,Γ2 ` S = S ′). By the inductive assump-

tion we have (Γ1, sn+1(Γ2[r/n + 1])) ∼ (Γ′1, sn+1(Γ
′
2[r
′/n + 1])). It remains to show

that (Γ1, sn+1(Γ2[r/n + 1]) ` sn+1(S[r/n + 1]) = sn+1(S
′[r′/n + 1])). By (2d) it is

sufficient to show that (Γ1, sn+1(Γ2[r/n+ 1]) ` sn+1(S[r/n+ 1]) = sn+1(S
′[r/n+ 1]))

and (Γ1, sn+1(Γ2[r/n+ 1]) ` sn+1(S
′[r/n+ 1]) = sn+1(S

′[r′/n+ 1])). The first relation
follows directly from (6a). To prove the second one it is sufficient by (7a) to show
that (Γ1, T,Γ2, S

′B) which follows from our assumption through (2c) and (2a).

(4) Given (Γ1 ` r : T ) ' (Γ′1 ` r′ : T ′) and (Γ1, T,Γ2 ` o : S) ' (Γ′1, T
′,Γ′2 ` o′ : S ′)

we have to show that

(Γ1, sn+1(Γ2[r/n+ 1]) ` sn+1(o[r/n+ 1]) : sn+1(S[r/n+ 1])) '
(Γ′1, sn+1(Γ

′
2[r
′/n+ 1]) ` sn+1(o

′[r′/n+ 1]) : sn+1(S
′[r′/n+ 1])).

where n = l(Γ1) = l(Γ′1) or equivalently that

(Γ1, sn+1(Γ2[r/n+ 1]), sn+1(S[r/n+ 1])) ∼ (Γ′1, sn+1(Γ
′
2[r
′/n+ 1]), sn+1(S

′[r′/n+ 1]))

and (Γ1, sn+1(Γ2[r/n+ 1]) ` sn+1(o[r/n+ 1]) = sn+1(o
′[r′/n+ 1]) : sn+1(S[r/n+ 1])).

The first statement follows from part (3) of the lemma. To prove the second statement
it is sufficient by (3d) to show that (Γ1, sn+1(Γ2[r/n + 1]) ` sn+1(o[r/n + 1]) =
sn+1(o

′[r/n+ 1]) : sn+1(S[r/n+ 1])) and (Γ1, sn+1(Γ2[r/n+ 1]) ` sn+1(o
′[r/n+ 1]) =

sn+1(o
′[r′/n + 1]) : sn+1(S[r/n + 1])). The first assertion follows directly from (6b).
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To prove the second one it is sufficient in view of (7b) to show that (Γ1, T,Γ2 ` o′ : S)
which follows conditions (3c) and (3a).

(5) Given (Γ, T ) ∼ (Γ′, T ′) we need to show that (Γ, T ` (n+1) : T ) ' (Γ′, T ′ ` (n+
1) : T ′) or equivalently that (Γ, T, T ) ∼ (Γ, T ′, T ′) and (Γ, T ` (n+ 1) = (n+ 1) : T ).
The second part follows from (3b). To prove the first part we need to show that
(Γ, T ` T = T ′). This follows from our assumption by (5a). �

Lemma 1.7. [2014.07.12.l1] Let C be a subset of Ob(CC(R,LM)) which is closed
under ft. Let ≤ be a transitive relation on C such that:

(1) Γ ≤ Γ′ implies l(Γ) = l(Γ′),
(2) Γ ∈ C and ft(Γ) ≤ F implies σ(Γ, F ) ∈ C and Γ ≤ σ(Γ, F ).

Then Γ ∈ C and fti(Γ) ≤ F for some i ≥ 1, implies that Γ ≤ σ(Γ, F ).

Proof. Simple induction on i. �

Lemma 1.8. [2014.07.12.l2] Let C and ≤ be as in Lemma 1.7. Then one has:

(1) (Γ, T ) ≤ (Γ, T ′) and Γ ≤ Γ′ implies that (Γ, T ) ≤ (Γ′, T ′),
(2) if ≤ is ft-monotone (i.e. Γ ≤ Γ′ implies ft(Γ) ≤ ft(Γ′)) and symmetric then

(Γ, T ) ≤ (Γ′, T ′) implies that (Γ, T ) ≤ (Γ, T ′).

Proof. The first assertion follows from

(Γ, T ) ≤ (Γ, T ′) ≤ σ((Γ, T ′),Γ′) = (Γ′, T ′)

The second assertion follows from

(Γ, T ) ≤ (Γ′, T ′) ≤ σ((Γ′, T ′),Γ) = (Γ, T ′)

where the second ≤ requires Γ′ ≤ Γ which follows from ft-monotonicity and symme-
try. �

Lemma 1.9. [2014.07.12.l3] Let C,≤ be as in Lemma 1.7, let C̃ be a subset of
Õb(CC(R,LM)) and ≤′ a transitive relation on C̃ such that:

(1) J ≤′ J ′ implies ∂(J ) ≤ ∂(J ′),
(2) J ∈ C̃ and ∂(J ) ≤ F implies σ̃(J , F ) ∈ C̃ and J ≤′ σ̃(J , F ).

Then J ∈ C̃ and fti(∂(J )) ≤ F for some i ≥ 0 implies J ≤ σ̃(J , F ).

Proof. Simple induction on i. �

Lemma 1.10. [2014.07.12.l4] Let C,≤ and C̃,≤′ be as in Lemma 1.9. Then one
has:

(1) (Γ ` o : T ) ≤′ (Γ ` o′ : T ) and (Γ, T ) ≤ (Γ′, T ′) implies that (Γ ` o : T ) ≤′
(Γ′ ` o′ : T ′),

(2) if (≤,≤′) is ∂-monotone (i.e. J ≤′ J ′ implies ∂(J ) ≤ ∂(J ′)) and ≤ is
symmetric then (Γ ` o : T ) ≤′ (Γ′ ` o′ : T ′) implies that (Γ ` o : T ) ≤′ (Γ `
o′ : T ).
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Proof. The first assertion follows from
(Γ ` o : T ) ≤′ (Γ ` o′ : T ) ≤′ σ̃((Γ ` o′ : T ), (Γ′, T ′)) = (Γ′ ` o′ : T ′)

The second assertion follows from
Γ ` o : T ) ≤′ (Γ′ ` o′ : T ′) ≤′ σ((Γ′ ` o′ : T ′), (Γ, T )) = (Γ ` o′ : T )

where the second ≤ requires Γ′ ≤ Γ which follows from ∂-monotonicity of ≤′ and
symmetry of ≤. �

Proposition 1.11. [2014.07.10.prop2] Let (C, C̃) be subsets in Ob(CC(R,LM))

and Õb(CC(R,LM)) respectively which correspond to a C-subsystem CC of CC(R,LM).
Then the constructions presented above establish a bijection between pairs of subsets
(Ceq, C̃eq) which together with (C, C̃) satisfy the conditions of Proposition 1.2 and
pairs of equivalence relations (∼,') on (C, C̃) such that:

(1) (∼,') corresponds to a regular congruence relation on CC (i.e., satisfies the
conditions of [?, Proposition 5.4]),

(2) Γ ∈ C and ft(Γ) ∼ F implies Γ ∼ σ(Γ, F ),
(3) J ∈ C̃ and ∂(J ) ∼ F implies J ' σ̃(J , F ).

Proof. One constructs a pair (∼,') from (Ceq, C̃eq) as in Definition 1.1. This pair
corresponds to a regular congruence relation by Proposition 1.2. Conditions (2),(3)
follow from Lemma 1.3.

Let (∼,') be equivalence relations satisfying the conditions of the proposition.
Define Ceq as the set of sequences (Γ, T, T ′) such that (Γ, T ), (Γ, T ′) ∈ C and (Γ, T ) ∼
(Γ, T ′). Define C̃eq as the set of sequences (Γ, T, o, o′) such that (Γ, T, o), (Γ, T, o′) ∈ C̃
and (Γ, T, o) ' (Γ, T, o′).

Let us show that these subsets satisfy the conditions of Proposition 1.2. Conditions
(2.a-2.d) and (3.a-3d) are obvious.

Condition (4a) follows from (2) by Lemma 1.7. Conditions (4b) and (4c) follow
from (3) by Lemma 1.9.

Conditions (5a) and (5b) follow from the compatibility of (∼,') with T and T̃ .

Conditions (6a),(6b),(7a),(7b) follow from the compatibility of (∼,') with S and
S̃. �
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